Abstract

The (2+1)-dimensional Eckhaus-type extension of the dispersive long wave (EEDLW) equation is investigated, which was obtained in the appropriate approximation from the basic equations of hydrodynamics. Though it has no Painleve property, we gain an auto-Backlund transformation (aBT) by truncating the Laurent series expansion at O(w0). In particular, the special one of the aBT establishes a relationship between the EEDLW equation and a set of three linear partial differential equations involving the well-known heat equation. Finally many types of new exact solutions of the EEDLW equation are found from the obtained aBT and some proper ansatze, which may be useful to explain some physical phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.