Abstract

In this paper, the injection-locked oscillator (ILO)-based receiver is investigated. The key design considerations of the ILO including the phase difference between the input and output signals and its impact on the ILO-based receiver are analysed in detail. Different strategies for both the narrow and wide-band applications are discussed and simulated. As a design example, a 2.4 GHz ILO-based receiver is implemented using a standard 40 nm CMOS technology, where a three-stage inverter-based ILO is optimised to maintain a good balance among working range, sensitivity and power consumption, etc. Measurement results show that the proposed receiver is able to demodulate an input signal at a 2.4 GHz carrier frequency with the data rate up to 1 Mbps while consuming $${<}300\, \upmu \hbox {W}$$<300μW power. It is suitable for short-range communication system such as chip-scale data link.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.