Abstract
Weber’s inverse problem in the plane is to modify the positive weights associated with n fixed points in the plane at minimum cost, ensuring that a given point a priori becomes the Euclidean weighted geometric median. In this paper, we investigate Weber’s inverse problem in the plane and generalize it to the surface of the sphere. Our study uses a subspace orthogonal to a subspace generated by two vectors X and Y associated with the given points and weights. The main achievement of our work lies in determining a vector perpendicular to the vectors X and Y, in Rn; which is used to determinate a solution of Weber’s inverse problem. In addition, lower bounds are obtained for the minimum of the Weber function, and an upper bound for the difference of the minimal of Weber’s direct and inverse problems. Examples of application at the plane and unit sphere are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.