Abstract

This paper deals with the inverse problem of the calculus of variations for systems of second-order ordinary differential equations. The case of the problem which Douglas, in his classification of pairs of such equations, called the ‘separated case’ is generalized to arbitrary dimension. After identifying the conditions which should specify such a case for n equations in a coordinate-free way, two proofs of its variationality are presented. The first one follows the line of approach introduced by some of the authors in previous work, and is close in spirit, though being coordinate independent, to the Riquier analysis applied by Douglas for n = 2. The second proof is more direct and leads to the discovery that belonging to the ‘separated case’ has an intrinsic meaning for the given second-order differential equations: the system is separable in the sense that it can be decoupled into n pairs of first-order equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.