Abstract

On the equation manifold of the 2nth-order scalar ordinary differential equation, n≥3, $$\frac{{\partial ^{2_n } u}}{{\partial x^{2_n } }} = f\left( {x,u,\frac{{\partial u}}{{\partial x}}, \ldots ,\frac{{\partial ^{2_{n - 1} } u}}{{\partial x^{2_{n - 1} } }}} \right),$$ we construct a contact two-form Π such that dΠ≡0 modΠ, if and only if Equation (1) admits a nondegenerate Lagrangian of order n. We show that the space of all nondegenerate Lagrangians for (1) is at most one-dimensional. The necessary and sufficient conditions for sixth-order and eighth-order scalar ordinary differential equation to admit a variational multiplier are found in terms of vanishing of a certain set of functions. The exact relationship between the Lie algebra of the classical infinitesimal contact symmetries of a variational Equation (1) and its the Lie subalgebra of infinitesimal divergence symmetries is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.