Abstract
We address the problem of whether there exists an external potential corresponding to a given equilibrium single particle density of a classical system. Results are established for both the canonical and grand canonical distributions. It is shown that for essentially all systems without hard core interactions, there is a unique external potential which produces any given density. The external potential is shown to be a continuous function of the density and, in certain cases, it is shown to be differentiable. As a consequence of the differentiability of the inverse map (which is established without reference to the hard core structure in the grand canonical ensemble), we prove the existence of the Ornstein-Zernike direct correlation function. A set of necessary, but not sufficient conditions for the solution of the inverse problem in systems with hard core interactions is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.