Abstract

Results of an accelerated test on the lifetime of a mylar-polyurethane laminated dc high voltage insulating structure are reported. This structure consists of mylar ribbons placed side by side in a number of layers, staggered and glued together with a polyurethane adhesive. The lifetime until breakdown as a function of extremely high values of voltage stress is measured and represented by a mathematical model, the inverse power law model with a 2-parameter Weibull lifetime distribution. The statistical treatment of the data — either by graphical or by analytical methods — allowed us to estimate the lifetime distribution and confidence bounds for any required normal voltage stress. The laminated structure under consideration is, according to the analysis, a very reliable dc hv insulating material, with a very good life performance according to the inverse power law model, and with an exponent of voltage stress equal to 6. A large insulator of cylindrical shape with this kind of laminated structure can be constructed by winding helically a mylar ribbon in a number of layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call