Abstract

The Gohberg–Semencul formula allows one to express the entries of the inverse of a Toeplitz matrix using only a few entries (the first row and the first column) of the inverse matrix, under some nonsingularity condition. In this paper we will provide a two variable generalization of the Gohberg–Semencul formula in the case of a nonsymmetric two-level Toeplitz matrix with a symbol of the form f(z1,z2)=1P(z1,z2)¯Q(z1,z2) where P(z1,z2) and Q(z1,z2) are stable polynomials of two variables. We also consider the case of operator valued two-level Toeplitz matrices. In addition, we propose an equation solver involving two-level Toeplitz matrices. Numerical results are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.