Abstract

We calculate the spectra of inverse Compton (IC) emissions in gamma-ray burst (GRB) shocks produced when relativistic ejecta encounters the external interstellar medium, assuming a broken power-law approximation to the synchrotron seed spectrum. Four IC processes, including the synchrotron self-Compton (SSC) processes in GRB forward and reverse shocks, and two combined-IC processes (i.e. scattering of reverse shock photons on the electrons in forward shocks and forward shock photons on the electrons in reverse shocks), are considered. We find that the SSC emission from reverse shocks dominates over other emission processes in energy bands from tens of MeV to tens of GeV, for a wide range of shock parameters. This mechanism may be responsible for the prompt high energy gamma-rays detected by the Energetic Gamma Ray Experiment Telescope (EGRET). At TeV energy bands, however, the combined-IC emissions and/or the SSC emission from the forward shocks become increasingly dominant for a moderately steep distribution of shocked electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.