Abstract

The rapid development of electronics leads to the creation and use of electronic components of small dimensions, including nanoelements of complex, layered structure. The search for effective methods for cooling electronic systems dictates the need for the development of methods for the numerical analysis of heat transfer in nanostructures. A characteristic feature of energy transfer in such systems is the dominant role of contact thermal resistance at interlayer interfaces. Since the contact resistance depends on a number of factors associated with the technology of heterostructures manufacturing, it is of great importance to determine the corresponding coefficients from the results of temperature measurements.The purpose of this paper is to evaluate the possibility of reconstructing the thermal resistance coefficients at the interfaces between layers by solving the inverse problem of heat transfer.The complex of algorithms includes two major blocks — a block for solving the direct heat transfer problem in a layered nanostructure and an optimization block for solving the inverse problem. The direct problem was formulated in an algebraic (finite difference) form under the assumption of a constant temperature within each layer, which is due to the small thickness of the layers. The inverse problem was solved in the extreme formulation, the optimization was carried out using zero-order methods that do not require the calculation of the derivatives of the optimized function. As a basic optimization algorithm, the Nelder—Mead method was used in combination with random restarts to search for a global minimum.The results of the identification of the contact thermal resistance coefficients obtained in the framework of a quasi-real experiment are presented. The accuracy of the identification problem solution is estimated as a function of the number of layers in the heterostructure and the «measurements» error.The obtained results are planned to be used in the new technique of multiscale modeling of thermal regimes of the electronic component base of the microwave range, when identifying the coefficients of thermal conductivity of heterostructure.

Highlights

  • The rapid development of electronics leads to the creation and use of electronic components of small dimensions, including nanoelements of complex, layered structure

  • The search for effective methods for cooling electronic systems dictates the need for the development of methods for the numerical analysis of heat transfer in nanostructures

  • A characteristic feature of energy transfer in such systems is the dominant role of contact thermal resistance at interlayer interfaces

Read more

Summary

Обратная коэффициентная задача теплопереноса в слоистых наноструктурах

Федерального исследовательского центра «Информатика и управление» РАН, ул. Вавилова, д. 40, Москва, 119333, Россия. Поиск эффективных методов охлаждения электронных систем диктует необходимость развития методов численного анализа тепловыделения и теплопереноса в наноструктурах. Характерной особенностью теплопереноса в слоистых наноструктурах является доминирующая роль контактного термического сопротивления на межслоевых интерфейсах (тепловой проводимости интерфейсов). При этом контактное сопротивление зависит от целого ряда факторов, связанных с технологией изготовления гетероструктур, что обуславливает необходимость определения соответствующих коэффициентов по результатам температурных измерений. Рассмотрена возможность восстановления коэффициентов термического сопротивления на границах соприкосновения слоев, изготовленных из разных материалов, с помощью решения обратной задачи теплопереноса. Характерной особенностью переноса энергии в таких системах является доминирующая роль контактного термического сопротивления на межслоевых интерфейсах, представляющая обратную величину к тепловой проводимости Капицы [14,15,16]. Ниже рассмотрены обратные задачи теплопереноса в гетероструктурах с целью идентификации коэффициентов термического сопротивления (тепловой проводимости) интерфейсов

Постановка задачи
Результаты расчетов и их обсуждение
Номер слоя
Библиографический список

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.