Abstract

Inverse Bremsstrahlung absorption (IBA) of an intense laser field in plasma containing Maxwellian and non-Maxwellian (with Kappa and q-nonextensive distribution functions) electrons is studied analytically. Our results show that IBA decreases with an increase in temperature at high intensities and a decrease in plasma density for all kinds of distribution functions. Another striking result is that IBA is independent of the laser intensity at low intensity but is dependent on it when the intensity is going to rise. Also, it could be find that the behavior of the absorption as the function of laser intensity for the Kappa distribution with κ = 10 at low intensity is close to that for the Maxwellian distribution, but at high intensity it is close to that in the presence of q-nonextensive electrons with q=0.9. These results provide insights into the inverse Bremsstrahlung absorption in the laser–plasma interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.