Abstract

The United Nations Framework Convention on Climate Change (UNFCCC) requires reporting net carbon stock changes and anthropogenic greenhouse gas emissions, including those related to forests. This paper describes the design and implementation of a nation-wide forest inventory of New Zealand’s planted post-1989 forests that arose from Land Use, Land-Use Change and Forestry activities (LULUCF) under Article 3.3 of the Kyoto Protocol. The majority of these forests are planted with Pinus radiata, with the remainder made up of other species exotic to New Zealand. At the start of the project there was no on-going national forest inventory that could be used as a basis for calculating carbon stocks and meet Good Practice Guidelines. A network of ground-based permanent sample plots was installed with airborne LiDAR (Light Detection and Ranging) for double sampling using regression estimators to predict carbon in each of the four carbon pools of above- and below-ground live biomass, dead wood and litter. Measurement, data acquisition and quality assurance/control protocols were developed specifically for the inventory, carried out in 2007 and 2008. Plots were located at the intersection of a forest with a 4 km square grid, coincident with an equivalent 8 km square grid established over the indigenous forest and “grassland with woody biomass” (Other Wooded Land). Planted tree carbon within a ground plot was calculated by an integrated system of growth, wood density and compartment allocation models utilising the data from measurements of trees and shrubs on the plots. This system, called the Forest Carbon Predictor, predicts past and future carbon in a stand and is conditioned so that the calculated basal area and mean top height equals that obtained by conventional mensuration methods at the time of the plot measurement. Mean per hectare carbon stocks were then multiplied by an estimate of the total area of post 1989 forests obtained from wall to wall mapping using a combination of satellite imagery and ortho-photography. The network of permanent samples plots and LiDAR double sampling methodology was designed to be simple and robust to change over time. In the future, using LiDAR should achieve sampling efficiencies over using ground plots alone and reduces any problems regarding restricted access on the ground. The network is to be remeasured at the end of commitment period 1, 2012, and the carbon stocks re-estimated in order to calculate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call