Abstract
AbstractOrganic acids, including humic acid, play a significant role in the weathering of minerals containing metals such as Pt and Pd. They are also among the reactants which are under consideration for new hydrometallurgical methods of liberating unconventional PGE ores (such as the oxidised ores of the Great Dyke, Zimbabwe, and at locations in the Bushveld Complex of South Africa where PGE-bearing layers have been exposed to weathering). In order to better understand the processes operating during weathering of PGE-bearing chromitite seams of the Bushveld Complex, chromite concentrate originating from a South African chromium mine was subjected to reaction with different concentrations of synthetic humic acid. The results confirm the greater mobility of palladium in the environment compared to platinum. Crushed chromite concentrate showed greater mobility of Cr, but not of Pd or Pt, compared to uncrushed concentrate. Increasing the concentration of humic acid increased the amount of Pd and Pt in solution. These experiments give insight into the processes that govern the weathering of chromitite in the Bushveld Complex. The main Pd– and Pt-bearing minerals are not enclosed within chromite but occur at grain boundaries. Thus, they can be liberated by disaggregation of chromite and infiltration of water along chromite grain boundaries. Once in solution, Pd is more mobile than Pt and is dispersed further. Organic acids play an important role during the weathering process as they are capable of enhancing the mobility of the PGE, particularly Pd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.