Abstract

Abstract“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm−2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm−2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.