Abstract

Inhibitory control is a key determinant of goal-directed behavior. Its susceptibility to reward implies that its variations may not only reflect cognitive ability, but also sensitivity to goal-relevant information. Since cognitive ability and motivational sensitivity vary as a function of age and mood, we hypothesized that their relevance for predicting individual differences in inhibition would similarly vary. Here, we tested this prediction with respect to the brain's intrinsic functional architecture. Specifically, we reasoned that age and affective functioning would both moderate the relationship between inhibition and resting state expression of the dynamic neural organization patterns linked to engaging in cognitive effort versus those involved in manipulating motivationally salient information. First, we used task fMRI data from the Human Connectome Project (N = 359 participants) to identify the brain organization patterns unique to effortful cognitive processing versus manipulation of motivationally relevant information. We then assessed the association between inhibitory control and relative expression of these two neural patterns in an independent resting state dataset from the Nathan Kline Institute-Rockland lifespan sample (N = 247). As hypothesized, the relation between inhibition and intrinsic functional brain architecture varied as a function of age and affective functioning. Among those with superior affective functioning, better inhibitory control in adolescence and early adulthood was associated with stronger resting state expression of the brain pattern that typified processing of motivationally salient information. The opposite effect emerged beyond the age of 49. Among individuals with poorer affective functioning, a significant link between inhibition and brain architecture emerged only before the age of 28. In this group, superior inhibition was associated with stronger resting state expression of the neural pattern that typified effortful cognitive processing. Our results thus imply that motivational relevance makes a unique contribution to superior cognitive functioning during earlier life stages. However, its relevance to higher-order mentation decreases with aging and increased prevalence of mood-related problems, which raises the possibility that patterns of neurobehavioral responsiveness to motivational salience may constitute sensitive markers of successful lifespan development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call