Abstract
McGill showed that the intrinsic local time process $$\tilde L$$ (t, x), t ≧ 0, x ∈ ℝ, of one-dimensional Brownian motion is, for fixedt>0, a supermartingale in the space variable, and derived an expression for its Doob-Meyer decomposition. This expression referred to the derivative of some process which was not obviously differentiable. In this paper, we provide an independent proof of the result, by analysing the local time of Brownian motion on a family of decreasing curves. The ideas involved are best understood in terms of stochastic area integrals with respect to the Brownian local time sheet, and we develop this approach in a companion paper. However, the result mentioned above admits a direct proof, which we give here; one is inevitably drawn to look at the local time process of a Dirichlet process which is not a semimartingale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.