Abstract
Rhamnolipids (RLs) comprise a class of glycolipids produced by Pseudomonas aeruginosa under appropriate culture medium. They act as biosurfactants being composed by a hydrophilic head of either one (mono-RL) or two (di-RL) rhamnose moieties coupled to hydroxyaliphatic chains. It is well accepted that RLs present low biolitic activity as compared to other synthetic surfactants. However, their mechanisms of action in biological systems are not well defined yet. The interaction of RLs with lipid bilayers are here investigated to address how they impact on plasma membrane at molecular level. Our experimental approach was based on a deep analysis of optical microscopy data from giant unilamellar vesicles (GUVs) dispersed in aqueous solutions containing up to 0.5 mM of commercially available RLs (a mixture of mono-RL, 33–37 mol%, and di-RL, 63–67 mol%, cmc of 0.068±0.005 mM). GUVs were made up of a single lipid POPC and a ternary system containing DOPC, sphingomyelin and cholesterol, which mimic lipid raft platforms. Our results demonstrate that RLs have a low partition in the lipid bilayer in respect to the total molecules in solution. We suppose that RLs insert in the outer leaflet with low propensity to flip-flop. In the case of POPC GUVs, the insertion of RL molecules in the outer leaflet impairs changes in spontaneous membrane curvature with incubation time. Then, small buds are formed that remain linked to the original membrane. No changes in membrane permeability have been detected. A remarkable result refers to the insertion of RLs in membranes containing liquid ordered (Lo) - liquid disordered (Ld) phase coexistence. The rate of interaction has been observed to be higher for Ld phase than for Lo phase (0.12·10-6 s−1 and 0.023·10-6 s−1 for Ld and Lo, respectively, at RL concentration of 0.5 mM). As a consequence, the preferential RL insertion in Ld phase may also alter the membrane spontaneous curvature which, coupled to the change in the line tension associated to the domains boundary, conducted to Lo domain protrusion. Even if it has been observed on a model system, such membrane remodelling might correlate to endocytic processes activated in cell membranes, regardless of the participation of specific proteins. Further, changes imposed by RLs in lipid rafts may affect the association of key proteins enrolled in cell signaling, which may perturb cell homeostasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.