Abstract

We compared the diagnostic performance of non-enhanced MRI and fat-suppressed contrast-enhanced MRI (CEMRI) in diagnosing intravertebral clefts in benign vertebral compression fractures (VCFs). We retrospectively reviewed 99 consecutive patients who had undergone percutaneous vertebroplasty for VCFs. A cleft was defined as a signal void or hyperintense area on non-enhanced MRI (T(1) and T(2) weighted imaging) or as a hypointense area within a diffusely enhanced vertebra on CEMRI. A cleft was confirmed as a solid opacification on post-procedural radiographs. The interobserver reliability and MRI diagnostic performance were evaluated. The interobserver reliability of non-enhanced MRI was substantial (k _ 0.698) and the interobserver reliability of CEMRI was almost perfect (k _ 0.836). Post-procedural radiographs showed solid cleft opacification in 32 out of the 99 cases. The sensitivity and specificity of non-enhanced MRI were 0.72 and 0.82 (observer 1) and 0.63 and 0.87 (observer 2), respectively. The sensitivity and specificity of CEMRI were 0.94 and 0.63 (observer 1) and 0.85 and 0.60 (observer 2), respectively. The sensitivity of CEMRI was significantly higher than that of non-enhanced MRI, and the specificity of non-enhanced MRI was higher than that of CEMRI. CEMRI was highly reliable and sensitive, and non-enhanced MRI was specific for intravertebral clefts. Therefore, spine MRIs, including CEMRI, could provide useful information about intravertebral clefts before percutaneous vertebroplasty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call