Abstract

Abstract This paper describes the evolution of global angular momentum (GAM) on intraseasonal timescales in data from two general circulation model (GCM) runs: an aquaplanet GCM and a fully “realistic” GCM that includes continents, topography, and observed climatological sea surface temperatures. For both GCMS, the angular momentum budget is quite well balanced. Composites of various quantities are calculated at different lags relative to the maximum GAM and GAM tendency. In both GCMS, this composite analysis shows that the GAM tendency is largest as a precipitation anomaly propagates eastward along the equator. Associated with this precipitation anomaly is a tropical circulation that shows some of the characteristics of the Gill model, particularly in the aquaplanet GCM, and a Rossby wave train that propagates from the Tropics into midlatitudes. It is the anomalous midiatitude surface wind field associated with this Rossby wave train that is primarily responsible for the anomalous friction torques in bot...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call