Abstract
The intracellular localization of a bovine anterior pituitary preparation of thyroid-stimulating hormone (TSH) was studied in guinea pigs and dogs. The preparation was administered intravascularly or applied directly to tissue sections. TSH was detected by an indirect technique utilizing bovine TSH antiserum and fluorescein-labeled anti-rabbit globulin; the presence of TSH in the tissue was indicated by fluorescence when the tissue was examined under the microscope with an ultraviolet light source. After either intravascular administration or direct application of the TSH preparation, striking fluorescence was found in the nuclei of the thyroid cells and to a lesser degree in the nuclei of retro-orbital fat tissue and kidney tubules in both species studied. A little fluorescence was also seen in spleen tissue. No fluorescence was noted in comparable tissues removed from control animals injected with bovine albumin or globulin or when the tissues were treated with the fluorescein-labeled globulin alone. Fluorescence was also noted in the nuclei of adrenal cells treated with unabsorbed antiserum, but this was greatly diminished when antiserum absorbed with crystalline ACTH was used. The positive reactions were all markedly decreased when the tissues were treated with antisera absorbed with the original TSH preparation. Fluorescence was noted in the cytoplasm of pituitary tissue from both treated and control animals, suggesting a cross-reaction between the bovine pituitary antisera and guinea pig or dog hypophysis. The indirect technique seems to be highly satisfactory for demonstration of the pitiutary hormone within the cell. In addition, the demonstration of immunologically active anterior pituitary TSH bound to cell nuclei offers a clue to the site of action of this hormone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.