Abstract

Revealing the mechanisms underlying the intracellular calcium responses in vascular endothelial cells (VECs) induced by mechanical stimuli contributes to a better understanding for vascular diseases, including hypertension, atherosclerosis, and aneurysm. Combining with experimental measurement and Computational Fluid Dynamics simulation, we developed a mechanobiological model to investigate the intracellular [Ca2+] response in a single VEC being squeezed through narrow microfluidic channel. The time-dependent cellular surface tension dynamics was quantified throughout the squeezing process. In our model, the various Ca2+ signaling pathways activated by mechanical stimulation is fully considered. The simulation results of our model exhibited well agreement with our experimental results. By using the model, we theoretically explored the mechanism of the two-peak intracellular [Ca2+] response in single VEC being squeezed through narrow channel and made some testable predictions for guiding experiment in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call