Abstract

The diversity of orchid species in semi-natural calcareous grassland is thought to depend on floral variability. However, differences in primary life-history strategy, or the overall suite of functional traits, could also affect coexistence. Both primary strategy (affecting day-to-day survival) and reproductive traits (representing periodic events) have been hypothesized to contribute to a general mechanism regulating the local persistence and relative abundance of species. We recorded species identity at 8,000 points at the centimetre scale along sixteen 5-m long transects at the Olive Lawn, a xeric sand calcareous grassland near Lecco, Italy. Transects allowed the relative abundance and spatial aggregation of Grime’s competitor, stress-tolerator, ruderal (CSR) strategies to be quantified. Orchid flowering and fruiting phenology was recorded alongside the phenology of graminoid growth. Seven orchid species were present and exhibited a spectrum of strategies spanning two extremes, (1) small early-flowering ruderals (R/CR-selected), and (2) larger-leaved competitors (C/CR) flowering later as dominant graminoids attained maximum height. These orchids, and other subordinate species in the community, exhibited random spatial distributions amongst dominant graminoids that exhibited a high degree of spatial aggregation and similar, but non-identical, stress-tolerator (S) strategies. The reproductive phenology of meadow orchids is an intimate component of their CSR strategies, and appears to promote coexistence by allowing segregation between temporal niches and the exploitation of opportunities between clumps of dominant species. Only for closely related species with identical CSR strategies, such as Ophrys benacensis and Ophrys sphegodes, could specific floral differences alone explain coexistence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call