Abstract
Chronic functional constipation is common in infants, and the bacterial composition of stools in this condition is not known. The study aims were to: (i) investigate the composition of the intestinal ecosystem in chronic functional constipation; (ii) establish whether the addition of the water‐holding agent calcium polycarbophil to the diet induces an improvement in constipation; and (iii) determine the composition of the intestinal ecosystem after the use of this agent. In total, 42 children (20F, 22M; mean age: 8.6 ± 2.9 y) were studied. Twenty‐eight children with functional chronic constipation without anatomical disorders were treated double‐blind in random sequence for 1 month with an oral preparation of calcium polycarbophil (0.62 g /twice daily) or placebo. Intestinal flora composition was evaluated by standard microbiological methods and biochemical assays on faecal samples collected before and after treatment. Fourteen healthy children were studied as controls. The results show that (i) the constipated children presented a significant increase in clostridia and bifidobacteria in faeces compared to healthy subjects–different species of clostridia and enterobacteriaceae were frequently isolated; no generalized overgrowth was observed; Clostridia outnumbered bacteroides and E. coli mean counts by 2–3log, while bacteroides and E. coli counts were similar (5‐6 log 10/g fresh faeces); these intestinal disturbances could be defined as a dysbiosis, i.e. a quantitative alteration in the relative proportions of certain intestinal bacterial species. (ii) Clinical resolution of constipation was achieved only in 43% of treated children and an improvement in 21% (one bowel movement every 2 d). (iii) Calcium polycarbophil treatment induced no significant changes in the composition of the intestinal ecosystem, nor in blood chemistry parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.