Abstract
The interstellar medium (ISM) seems to have a significant surplus of oxygen which was dubbed as the "O crisis": independent of the adopted interstellar reference abundance, the total number of O atoms depleted from the gas phase far exceeds that tied up in solids by as much as ~160ppm of O/H. Recently, it has been hypothesized that the missing O could be hidden in micrometer-sized H2O ice grains. We examine this hypothesis by comparing the infrared (IR) extinction and far-IR emission arising from these grains with that observed in the Galactic diffuse ISM. We find that it is possible for the diffuse ISM to accommodate ~160ppm of O/H in micron-sized H2O ice grains without violating the observational constraints including the absence of the 3.1micron O-H absorption feature. More specifically, H2O ice grains of radii ~4micron and O/H = 160 ppm are capable of accounting for the observed flat extinction at ~ 3-8 micron and produce no excessive emission in the far-IR. These grains could be present in the diffuse ISM through rapid exchange of material between dense molecular clouds where they form and diffuse clouds where they are destroyed by photosputtering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.