Abstract
In this paper, it is proved that a certain power of the topological Jacobson radical for a ring annihilates a left module having topological Krull dimension over this ring. The estimation of this power depends on the topological Krull dimension and the dual topological Krull dimension. A similar estimation for discrete Jacobson radical holds true. Levitzky’s theorem is generalized for topological rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.