Abstract

Klainerman, Luk and Rodnianski derived an anisotropic criterion for formation of trapped surfaces in vacuum, extending the original trapped surface formation theorem of Christodoulou. The effort to understand their result led us to study the intersection of a hyperplane with a lightcone in the Minkowski spacetime. For the intrinsic geometry of the intersection, depending on the hyperplane being spacelike, null or timelike, it has the constant positive, zero or negative Gaussian curvature. For the extrinsic geometry of the intersection, we find that it is a noncompact marginal trapped surface when the hyperplane is null. In this case, we find a geometric interpretation of the Green's function of the Laplacian on the standard sphere. In the end, we contribute a clearer understanding of the anisotropic criterion for formation of trapped surfaces in vacuum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.