Abstract

Fields of sea surface temperature anomalies from the Global Ocean Surface Temperature Atlas (GOSTA) and microwave sounding measurements (MSU) of temperature in the troposphere are examined separately and together for the 1979–1988 period. Global correlation patterns of both sets of fields are investigated at a range of leads and lags up to 6 months and exhibit a wide range of correlation structure. There are regions, such as the tropical eastern Pacific, where sea surface temperature anomalies persist for several months and are associated with local air temperature anomalies; in this particular example, about 0.7°C air temperature change is associated with a 1.0°C sea temperature change. By contrast, some ocean regions and many atmospheric regions, mostly in middle and high latitude, show only local spatial correlations that disappear completely in a month or two. The most persistent and extensive spatial correlation patterns are quite different for the sea and the air. In the sea the “butterfly” pattern of the Pacific is the most important and reverses sign between the eastern equatorial Pacific and the western Pacific and subtropics. In the warm phase the temperature anomalies associated with this pattern are similar to the correlation pattern. For the atmosphere the main correlation pattern is an equatorial belt with no sign changes in the tropics; this pattern is linked to the oceanic El Niño mode. In the warm phase the temperature anomalies show peak values on both sides of the equator in the eastern and central Pacific. Based mainly on the results from the spatial patterns, certain regions are selected for intercomparison of time series. In the tropical eastern Pacific the sea leads the air by about a month while in the Gulf Stream and Kuroshio regions the sequence is reversed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.