Abstract

BackgroundProton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. In pathological situations, the MRS profile changes and this has been particularly described for brain tumours. However, radiologists are frequently not familiar to the interpretation of MRS data and for this reason, the usefulness of decision-support systems (DSS) in MRS data analysis has been explored.ResultsThis work presents the INTERPRET DSS version 3.0, analysing the improvements made from its first release in 2002. Version 3.0 is aimed to be a program that 1st, can be easily used with any new case from any MR scanner manufacturer and 2nd, improves the initial analysis capabilities of the first version. The main improvements are an embedded database, user accounts, more diagnostic discrimination capabilities and the possibility to analyse data acquired under additional data acquisition conditions. Other improvements include a customisable graphical user interface (GUI). Most diagnostic problems included have been addressed through a pattern-recognition based approach, in which classifiers based on linear discriminant analysis (LDA) were trained and tested.ConclusionsThe INTERPRET DSS 3.0 allows radiologists, medical physicists, biochemists or, generally speaking, any person with a minimum knowledge of what an MR spectrum is, to enter their own SV raw data, acquired at 1.5 T, and to analyse them. The system is expected to help in the categorisation of MR Spectra from abnormal brain masses.

Highlights

  • Proton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners

  • Since database development, population and decision-support systems (DSS) development had been performed in parallel, the final system did not benefit from the extensive data quality controls applied to the database [5], and the DSS contained small errors

  • The system in its first version could only be used for demonstration purposes or as an MRS learning tool, but not as one that allowed users to enter a new, unprocessed MR spectrum from any format or manufacturer and to evaluate it with the system

Read more

Summary

Introduction

Proton Magnetic Resonance (MR) Spectroscopy (MRS) is a widely available technique for those clinical centres equipped with MR scanners. Unlike the rest of MR-based techniques, MRS yields not images but spectra of metabolites in the tissues. Proton magnetic resonance spectroscopy (1H-MRS) is one of several MR-based techniques, which gives information about metabolites in solution in the millimolar range of concentration, in living tissues. After the end of the project, the DSS started to be distributed free of charge through the project’s web page http://gabrmn.uab.es/INTERPRET. It presented several practical limitations with respect to its routine use at radiology facilities. The most important limitations still, were the lack of connection between the data processing that is always needed with MRS data and the introduction of new cases of unknown pathology for their evaluation. The system in its first version could only be used for demonstration purposes or as an MRS learning tool, but not as one that allowed users to enter a new, unprocessed MR spectrum from any format or manufacturer and to evaluate it with the system

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.