Abstract

While both turn formation and hydrophobic interactions play dominant roles in the initiation of protein folding, their individual contributions to the folding kinetics and to the structural stability of the protein still remain poorly understood. Here, we applied a photolabile linker to "cage" some important structural motifs, including both α-helices and β-sheets, into their non-native states. These "caged" structural motifs are then relaxed by laser-flash photolysis and their refolding events followed by photoacoustic calorimetry (PAC) and photothermal beam deflection (PBD). These experiments, combined with our previous results, revealed that spontaneous α-helix formation can occur extremely rapidly (10(8)-10(9) s(-1)) if the process is driven solely by turn formation followed by helix propagation. However, if sequestering of the side chains of hydrophobic amino acid residues participates in the refolding process, which may provide additional driving force beyond that afforded by turn formation alone, the refolding rate will be retarded, often by many orders of magnitude. This is usually the case in the formation of three-stranded β-sheets (10(7)-10(8) s(-1)) and β-hairpins (10(5)-10(6) s(-1)). Thus, we propose that proteins take advantage of the hierarchy of timescales associated with either turn formation, hydrophobic interactions, or global collapse of tertiary structure to accomplish the folding process in an orderly fashion, as these events are sufficiently separated in time and do not interfere with one another.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.