Abstract

AbstractWith rapid advances in material synthesis and device performance, the long‐term stability of organic solar cells has become the main remaining challenge toward commercialization. An investigation of photodegradation in blend films of the donor polymer poly(3‐hexylthiophene) (P3HT) and the rhodanine‐flanked small molecule acceptor 5,5′‐[(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)bis(2,1,3‐benzothiadiazole‐7,4‐diylmethylidyne)]bis[3‐ethyl‐2‐thioxo‐4‐thiazolidinone] (FBR) is presented in an ambient atmosphere. The photobleaching kinetics of the pure materials and their blends is correlated with the generation of radicals and triplet excitons using optical and magnetic resonance techniques. In addition, spin‐trapping methods are employed to identify reactive oxygen species (ROS). In films of P3HT, FBR, and the P3HT:FBR blend, superoxide is generated by electron transfer to molecular oxygen. However, it is found that the generation of singlet oxygen by energy transfer from the FBR triplet state is responsible for the poor stability of FBR and for the accelerated photodegradation at later times of the P3HT:FBR blend. In the early stage of degradation of the neat blend, it is protected from singlet oxygen by the fast donor–acceptor charge transfer, which competes with triplet exciton formation. These results provide initial input for a rational design of donor and acceptor materials through tuning the molecular singlet and triplet energy levels to prevent ROS‐related photodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.