Abstract

Positive interspecific interactions are commonplace, and in recent years ecologists have begun to realize how important they can be in determining community and ecosystem dynamics. It has been predicted that net positive interactions are likely to occur in environments characterized by high abiotic stress. Although empirical field studies have started to support these predictions, little theoretical work has been carried out on the dynamic nature of these effects and their consequences for community structure. We use a simple patch-occupancy model to simulate the dynamics of a pair of species living on an environmental gradient. Each of the species can exist as either a mutualist or a cheater. The results confirm the prediction: a band of mutualists tends to occur in environmental conditions beyond the limits of the cheaters. The region between mutualists and cheaters is interesting: population density here is low. Mutualists periodically occupy this area, but are displaced by cheaters, who themselves go extinct in the absence of the mutualists. Furthermore, the existence of mutualists extends the area occupied by the cheaters, essentially increasing their realized niche. Our approach has considerable potential for improving our understanding of the balance between positive and negative interspecific interactions and for predicting the probable impacts of habitat loss and climate change on communities dominated by positive interspecific interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call