Abstract

Polymer-nanoparticle composite films (PNCFs) with high loadings of nanoparticles (NPs) (>50 vol %) have applications in multiple areas, and an understanding of their mechanical properties is essential for their broader use. The high-volume fraction and small size of the NPs lead to physical confinement of the polymers that can drastically change the properties of polymers relative to the bulk. We investigate the fracture behavior of a class of highly loaded PNCFs prepared by polymer infiltration into NP packings. These polymer-infiltrated nanoparticle films (PINFs) have applications as multifunctional coatings and membranes and provide a platform to understand the behavior of polymers that are highly confined. Here, the extent of confinement in PINFs is tuned from 0.1 to 44 and the fracture toughness of PINFs is increased by up to a factor of 12 by varying the molecular weight of the polymers over 3 orders of magnitude and using NPs with diameters ranging from 9 to 100 nm. The results show that brittle, low molecular weight (MW) polymers can significantly toughen NP packings, and this toughening effect becomes less pronounced with increasing NP size. In contrast, high MW polymers capable of forming interchain entanglements are more effective in toughening large NP packings. We propose that confinement has competing effects of polymer bridging increasing toughness and chain disentanglement decreasing toughness. These findings provide insight into the fracture behavior of confined polymers and will guide the development of mechanically robust PINFs as well as other highly loaded PNCFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.