Abstract
Abstract Magnetized turbulence and magnetic reconnection are often invoked to explain the nonthermal emission observed from a wide variety of astrophysical sources. By means of fully kinetic 2D and 3D particle-in-cell simulations, we investigate the interplay between turbulence and reconnection in generating nonthermal particles in magnetically dominated (or, equivalently, “relativistic”) pair plasmas. A generic by-product of the turbulence evolution is the generation of a nonthermal particle spectrum with a power-law energy range. The power-law slope p is harder for larger magnetizations and stronger turbulence fluctuations, and it can be as hard as p ≲ 2. The Larmor radius of particles at the high-energy cutoff is comparable to the size l of the largest turbulent eddies. Plasmoid-mediated reconnection, which self-consistently occurs in the turbulent plasma, controls the physics of particle injection. Then, particles are further accelerated by stochastic scattering off turbulent fluctuations. The work done by parallel electric fields—naturally expected in reconnection layers—is responsible for most of the initial energy increase and is proportional to the magnetization σ of the system, while the subsequent energy gain, which dominates the overall energization of high-energy particles, is powered by the perpendicular electric fields of turbulent fluctuations. The two-stage acceleration process leaves an imprint in the particle pitch-angle distribution: low-energy particles are aligned with the field, while the highest-energy particles move preferentially orthogonal to it. The energy diffusion coefficient of stochastic acceleration scales as D γ ∼ 0.1σ(c/l)γ 2, where γ is the particle Lorentz factor. This results in fast acceleration timescales t acc ∼ (3/σ)l/c. Our findings have important implications for understanding the generation of nonthermal particles in high-energy astrophysical sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.