Abstract

Ice-on date occurred significantly later over 1975–2009 at Dickie Lake, Ontario, while ice-off date showed no significant trend, differing from many other records in North America. We examined the ice phenology using 3 modelling approaches: a lake-specific regression model to derive a suite of local predictors; a regionally derived regression model to test larger-scale predictors; and a physically based, one-dimensional thermodynamic model. All 3 models were also applied to generate future ice cover scenarios. The local regression revealed air temperature to be an important predictor of ice phenology in our area, as reported elsewhere; however, reductions in wind speed and increases in lake heat storage over the last 35 years also contributed significantly to a delayed ice-on date. Ice-off dates were strongly correlated with the effects of warmer air temperatures but also influenced by increased snowfall and reduced wind speed. Thus, although changes in ice phenology were related to continental-scale changes in air temperature, they were also influenced by more localized climatic variables, and a careful examination of local events was needed for a complete assessment of ice phenology. Predictabilities of the regional regression model, which primarily relied on air temperature to predict phenology, and the physically based model were lower than the lake-specific local regressions, reinforcing the need for inclusion of local variables when greater accuracy is important. Finally, the 3 methods generated similar estimates of reductions in ice cover over the next 90 years, predicting a 4050 day decrease in ice season length by 2100.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.