Abstract

ClpXP is a two-component protease composed of ClpX, an ATP-dependent chaperone that recognizes and unfolds specific substrates, and ClpP, a serine protease. One ClpXP substrate in Escherichia coli is FtsZ, which is essential for cell division. FtsZ polymerizes and forms the FtsZ ring at midcell, where division occurs. To investigate the role of ClpXP in cell division, we examined the effects of clpX and clpP deletions in several strains that are defective for cell division. Together, our results suggested that ClpXP modulates cell division through degradation of FtsZ and possibly other cell division components that function downstream of FtsZ ring assembly. In the ftsZ84 strain, which is temperature sensitive for filamentation due to a mutation in ftsZ, we observed that deletion of clpX or clpP suppresses filamentation and reduces FtsZ84 degradation. These results are consistent with ClpXP playing a role in cell division by modulating the level of FtsZ through degradation. In another division-defective strain, ΔminC, the additional deletion of clpX or clpP delays cell division and exacerbates filamentation. Our results demonstrate that ClpXP modulates division in cells lacking MinC by a mechanism that requires ATP-dependent degradation. However, antibiotic chase experiments in vivo indicate that FtsZ degradation is slower in the ΔminC strain than in the wild type, suggesting there may be another cell division component degraded by ClpXP. Taken together these studies suggest that ClpXP may degrade multiple cell division proteins, thereby modulating the precise balance of the components required for division.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call