Abstract
Junín arenavirus infections are associated with high levels of interferons in both severe and fatal cases. Upon Junín virus (JUNV) infection a cell signaling cascade initiates, that ultimately attempts to limit viral replication and prevent infection progression through the expression of host antiviral proteins. The interferon stimulated gene (ISG) viperin has drawn our attention as it has been highlighted as an important antiviral protein against several viral infections. The studies of the mechanistic actions of viperin have described important functional domains relating its antiviral and immune-modulating actions through cellular lipid structures. In line with this, through silencing and overexpression approaches, we have identified viperin as an antiviral ISG against JUNV. In addition, we found that lipid droplet structures are modulated during JUNV infection, suggesting its relevance for proper virus multiplication. Furthermore, our confocal microscopy images, bioinformatics and functional results also revealed viperin-JUNV protein interactions that might be participating in this antiviral pathway at lipid droplet level. Altogether, these results will help to better understand the factors mediating innate immunity in arenavirus infection and may lead to the development of pharmacological agents that can boost their effectiveness thereby leading to new treatments for this viral disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.