Abstract

Nitrogen metabolite repression (NMR) in filamentous fungi is controlled by the GATA transcription factors AreA and AreB. While AreA mainly acts as a positive regulator of NMR-sensitive genes, the role of AreB is not well understood. We report the characterization of AreB and its interplay with AreA in the gibberellin-producing fungus Fusarium fujikuroi. The areB locus produces three different transcripts that each code for functional proteins fully complementing the areB deletion mutant that influence growth and secondary metabolism. However, under nitrogen repression, the AreB isoforms differ in subcellular localization indicating distinct functions under these conditions. In addition, AreA and two isoforms of AreB colocalize in the nucleus under low nitrogen, but their nuclear localization disappears under conditions of high nitrogen. Using a bimolecular fluorescence complementation (BiFC) approach we showed for the first time that one of the AreB isoforms interacts with AreA when starved of nitrogen. Cross-species complementation revealed that some AreB functions are retained between F. fujikuroi and Aspergillus nidulans while others have diverged. By comparison to other fungi where AreB was postulated to function as a negative counterpart of AreA, AreB can act as both repressor and activator of transcription in F. fujikuroi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.