Abstract

Nonprimate terrestrial mammals may use digitigrade postures to help moderate distal limb joint moments and metapodial stresses that may arise during high-speed locomotion with high-ground reaction forces (GRF). This study evaluates the relationships between speed, GRFs, and distal forelimb kinematics in order to evaluate if primates also adopt digitigrade hand postures during terrestrial locomotion for these same reasons. Three cercopithecine monkey species (Papio anubis, Macaca mulatta, Erythrocebus patas) were videotaped moving unrestrained along a horizontal runway instrumented with a force platform. Three-dimensional forelimb kinematics and GRFs were measured when the vertical force component reached its peak. Hand posture was measured as the angle between the metacarpal segment and the ground (MGA). As predicted, digitigrade hand postures (larger MGA) are associated with shorter GRF moment arms and lower wrist joint moments. Contrary to expectations, individuals used more palmigrade-like (i.e. less digitigrade) hand postures (smaller MGA) when the forelimb was subjected to higher forces (at faster speeds) resulting in potentially larger wrist joint moments. Accordingly, these primates may not use their ability to alter their hand postures to reduce rising joint moments at faster speeds. Digitigrady at slow speeds may improve the mechanical advantage of antigravity muscles crossing the wrist joint. At faster speeds, greater palmigrady is likely caused by joint collapse, but this posture may be suited to distribute higher GRFs over a larger surface area to lower stresses throughout the hand. Thus, a digitigrade hand posture is not a cursorial (i.e. high speed) adaptation in primates and differs from that of other mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.