Abstract
<p>High-resolution water quality data obtained with <em>in situ</em> sensors and analysers coupled to flow discharge records can reveal critical information on hydrochemical and biogeochemical functioning of aquatic ecosystems. In this study we explore a rich high-resolution hydrochemical dataset to synthesise the impact of hydrological flushing and biogeochemical cycling on water quality in a 3<sup>rd</sup> order groundwater-fed stream draining an agricultural catchment dominated by grassland.Our results show that despite large storm to storm diversity in hydrochemical responses, storm event magnitude and timing have a critical role in controlling the type of mobilisation, flushing and cycling behaviour. These results can be used to evaluate pollution risks in streams and their effects on freshwater quality.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.