Abstract

Multi-stimuli responsivity in 3D-printed objects is receiving much attention. However, the simultaneous interplay between different environmental stimuli is largely unexplored. In this work, we demonstrate direct ink writing of an oligomeric ink containing an azobenzene photo-switch with an accessible hydrogen bond allowing triple responsivity to light, heat, and water. The resulting printed liquid crystal elastomer performs multiple actuations, the specific response depending on the environmental conditions. Bilayer films formed by printing on a static substrate can rapidly change shape, bending almost 80 degrees if irradiated in air or undergoing a shrinkage of about 50 % of its length when heated. The bilayer film assumes dramatically different shapes in water depending on combined environmental temperature and lighting conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call