Abstract
The cochlear amplifier is a nonlinear active process providing the mammalian ear with its extraordinary sensitivity, large dynamic range and sharp frequency tuning. While there is much evidence that amplification results from active force generation by mechanosensory hair cells, there is debate about the cellular processes behind nonlinear amplification. Outer hair cell electromotility has been suggested to underlie the cochlear amplifier. However, it has been shown in frog and turtle that spontaneous movements of hair bundles endow them with a nonlinear response with increased sensitivity that could be the basis of amplification. The present work shows that the properties of the cochlear amplifier could be understood as resulting from the combination of both hair bundle motility and electromotility in an integrated system that couples these processes through the geometric arrangement of hair cells embedded in the cochlear partition. In this scenario, the cochlear partition can become a dynamic oscillator which in the vicinity of a Hopf bifurcation exhibits all the key properties of the cochlear amplifier. The oscillatory behavior and the nonlinearity are provided by active hair bundles. Electromotility is largely linear but produces an additional feedback that allows hair bundle movements to couple to basilar membrane vibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.