Abstract

An in-depth study of the interphase precipitation reaction in model vanadium steels has shown that the reaction may not just be confined to HSLA steels, but may be part of a general class of banded microstructures which are common to both eutectoid and eutectic systems. A new mass transport theory has been developed in which the interphase precipitation reaction in Fe-C-V steels is treated as a generalized type of cooperative growth. In addition to predicting the spacings of sheets of interphase precipitates and the precipitate sizes in steels, this theory is providing new insights into the origin of banded structures occurring in eutectic systems at solid-liquid interface boundary velocities faster than those required for coupled growth, but slower than those required to produce the extended metastable solid solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.