Abstract

The Internet of Things (IoT) is a system of wireless, interrelated, and connected digital devices that can collect, send, and store data over a network without requiring human-to-human or human-to-computer interaction. The IoT promises many benefits to streamlining and enhancing health care delivery to proactively predict health issues and diagnose, treat, and monitor patients both in and out of the hospital. Worldwide, government leaders and decision makers are implementing policies to deliver health care services using technology and more so in response to the novel COVID-19 pandemic. It is now becoming increasingly important to understand how established and emerging IoT technologies can support health systems to deliver safe and effective care. The aim of this viewpoint paper is to provide an overview of the current IoT technology in health care, outline how IoT devices are improving health service delivery, and outline how IoT technology can affect and disrupt global health care in the next decade. The potential of IoT-based health care is expanded upon to theorize how IoT can improve the accessibility of preventative public health services and transition our current secondary and tertiary health care to be a more proactive, continuous, and coordinated system. Finally, this paper will deal with the potential issues that IoT-based health care generates, barriers to market adoption from health care professionals and patients alike, confidence and acceptability, privacy and security, interoperability, standardization and remuneration, data storage, and control and ownership. Corresponding enablers of IoT in current health care will rely on policy support, cybersecurity-focused guidelines, careful strategic planning, and transparent policies within health care organizations. IoT-based health care has great potential to improve the efficiency of the health system and improve population health.

Highlights

  • The challenges presented by an aging population with multiple chronic conditions are ubiquitous worldwide [1]

  • There are still important gaps for future research to address, which relate to the Internet of Things (IoT) technology itself, the health system, and the users of IoT technology

  • Specific future research on IoT technology needs to address how IoT devices can be designed with standardized protocols and interoperability with international and cross-state health systems

Read more

Summary

Introduction

The challenges presented by an aging population with multiple chronic conditions are ubiquitous worldwide [1]. Smart health care services make use of advancements in information technologies, such as IoT, big data analytics, cloud computing, AI, and deep machine learning, to transform traditional health care delivery to be a more efficient, convenient, and a more personalized system [65]. Semantic interoperability in IoT is a necessary condition for big data techniques to support decision-making processes [96] It is increasingly common for each new technology startup, device, or system manufacturer to define their own specific architecture, protocols, and data formats, which are unable to communicate with the health care environment unless they are appreciably redeveloped or adapted to interoperate with hospital IoT platforms [96].

Conclusions
68. Australian Burden of Disease Study
Findings
86. Horizon Scanning Series
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.