Abstract

Molecular devices, which consist of single or a few molecules, are envisioned to perform advanced tasks such as molecular information processing and collaborative sensing/actuating if they are operated in a cooperative manner. To connect these nanoscopic primitive devices with each other and with macroscale networks, and thus, to realize the internet of molecular devices, requires fundamentally different and novel approaches, other than the molecular or electromagnetic nanocommunications. Recently, we proposed and studied the use of Forster resonance energy transfer (FRET), which is a short-range nonradiative energy transfer process between fluorophores, as a high-rate and reliable wireless communication mechanism to connect fluorophore-based photoactive molecular devices. In this paper, we provide an in-depth architectural view of this new communication paradigm with a focus on its peculiarities, fundamental principles, and design requirements by comprehensively surveying the theoretical and experimental positions and ideas. We give an overview of networking opportunities offered by the intrinsic capabilities of fluorophores under the novel concept of Internet of Molecular Things. We present some prospective applications, theoretical modeling approaches, and experimental opportunities, and finally discuss the implementation challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.