Abstract

China's export benefits from the significant fiscal stimulus in the United States. This paper analyzes the global spillover effect of the American economy on China's macro-economy using the Markov Chain Monte Carlo (MCMC)-Gibbs sampling approach, with the goal of improving the ability of China's financial system to protect against foreign threats. This paper examines the theories of the consequences of uncertainty on macroeconomics first. Then, using medium-sized economic and financial data, the uncertainty index of the American and Chinese economies is built. In order to complete the test and analysis of the dynamic relationship between American economic uncertainty and China's macro-economy, a Time Varying Parameter-Stochastic Volatility-Vector Autoregression (TVP- VAR) model with random volatility is constructed. The model is estimated using the Gibbs sampling method based on MCMC. For the empirical analysis, samples of China's and the United States' economic data from January 2001 to January 2022 were taken from the WIND database and the FRED database, respectively. The data reveal that there are typically fewer than 5 erroneous components in the most estimated parameters of the MCMC model, which suggests that the model's sampling results are good. China's pricing level reacted to the consequences of the unpredictability of the American economy by steadily declining, reaching its lowest point during the financial crisis in 2009, and then gradually diminishing. After 2012, the greatest probability density range of 68% is extremely wide and contains 0, indicating that the impact of economic uncertainty in the United States on China's pricing level is no longer significant. China should therefore focus on creating a community of destiny by working with nations that have economic cooperation to lower systemic financial risks and guarantee the stability of the capital market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.