Abstract
Neutrophils are emerging as promising candidates for cell-based nanodrug delivery to tumors due to their unique biological properties. This study aims to investigate the mechanisms of nanoparticle internalization by neutrophils, specifically focusing on liposomes, poly(lactic-co-glycolic acid) (PLGA), and magnetite nanoparticles. Understanding these mechanisms could enhance the efficiency of neutrophil-based nanodrug delivery for cancer treatment. Neutrophils were isolated from the peripheral blood of mice bearing 4T1 mammary adenocarcinoma. Confocal microscopy, transmission electron microscopy, and flow cytometry were employed to evaluate the uptake of liposomes, PLGA, and magnetite nanoparticles by neutrophils. The effects of cultivation conditions, such as the presence or absence of plasma in the growth medium, were also examined. Additionally, the roles of immunoglobulins (IgG/IgM) and cell surface receptors (Fc and scavenger receptors) in nanoparticle internalization were explored. All types of nanoparticles were successfully internalized by neutrophils, though the mechanisms of uptake varied. Plasma presence in the medium significantly influenced nanoparticle binding, particularly for PLGA nanoparticles. Internalization of PLGA nanoparticles was found to depend on the presence of IgG/IgM in the medium and Fc receptors on neutrophil surfaces, while scavenger receptors were not involved. Understanding the distinct endocytosis pathways for different nanoparticles can improve the efficacy of neutrophil loading with nanodrugs, potentially advancing the development of neutrophil-based cancer therapies. The findings underscore the importance of the extracellular environment in modulating nanoparticle uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.