Abstract

A detailedab initio study of the molecular structure and rotational barriers of biphenyl has been performed. First, non-dynamical correlation effects involving the π system are taken into account at the CASSCF level. These wave functions are subsequently employed as reference functions in a multiconfigurational second-order perturbation treatment (CASPT2). The performance single-reference approaches is in addition analysed. The molecular geometries of biphenyl in twisted, coplanar, and perpendicular conformations have been optimized at the CASSCF level. A rotational angle of 44.3° is predicted for the minimum energy conformer in agreement with gas-phase electron diffraction data (44.4±1.2°). The highest level of theory employed yields the values 12.93 (6.0±2.1) and 6.40 (6.5±2.5) kJ/mol for the barrier heights at 0° and 90°, respectively (electron diffraction data within parentheses). In the light of the present findings, the reliability of the available experimental data is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call