Abstract

The main features of the internal oxidation in two-phase binary alloys are examined for insignificant and important diffusion of the most-reactive component and are compared with the behavior of corresponding single-phase systems. It is shown that two-phase alloys may have two different types of internal oxidation, one of which is similar to that of the single-phase alloys (classical type), producing a uniform distribution of small oxide particles in the zone of internal oxidation, while another is typical of two-phase systems and involves the in situ conversion of the most-reactive component into its oxide. It is also shown that, under the same values of all the relevant parameters, the classical internal oxidation of two-phase alloys involves faster kinetics and smaller degrees of enrichment of the most-reactive component in the zone of internal oxidation than for single-phase alloys. As a consequence of this, the transition to the external oxidation of the most-reactive component in these systems involves higher overall concentrations of the most-reactive component than in corresponding single-phase alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.