Abstract

Two pure phospholipids, dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine, have been studied using freeze-fracture electron microscopy and the partitioning of the spin label, TEMPO. It is found that the characteristic band pattern, corresponding to monoclinic symmetry in multilamellar liposomes, is observed only in freeze-fracture electron microphotographs when samples are quenched from temperatures intermediate between the chain melting transition temperature and the pretransition temperature of the membrane. Markings are also observed on fracture faces of samples quenched from below the pretransition, but these “bands” are few in number and are widely and irregularly spaced. The lipid membranes used for freeze-fracture were prepared using detergent dialysis and are thought to consist of one, two, or some small number of concentric bilayer shells. These observations are in excellent accord with the recent, prior studies of Janiak, M.J., Small, D.M. and Shipley, G.G., ((1976) Biochemistry, 15, 4575–4580), who found monoclinic symmetry (P β′ structure) in multimellar liposomes of these phospholipids only when the sample temperature was intermediate between the main, chain melting transition temperature, and the presentation temperature. The significance of these results for relating freeze-fracture electron microphotographis to phase diagrams derived from spin label or calorimetric data is discussed briefly. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) partitioning data show distinct differences between liposomal preparations of these lipids, and other preparations having fewer bilayers per vesicular structure, with respect to the position, width, and hysteresis of the pretransition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.