Abstract

The N-terminal domain of dynein intermediate chain, IC(1-289), is highly disordered, but upon binding to dynein light-chain LC8, it undergoes a significant conformational change to a more ordered structure. Using circular dichroism and fluorescence spectroscopy, we demonstrate that the change in conformation is due to an increase in the helical structure and to enhanced compactness in the environment of tryptophan 161. An increase in helical structure and compactness is also observed with trimethylamine-N-oxide (TMAO), a naturally occurring osmolyte used here as a probe to identify regions with a propensity for induced folding. Global protection of IC(1-289) from protease digestion upon LC8 binding was localized to a segment that includes residues downstream of the LC8-binding site. Several smaller constructs of IC(1-289) containing the LC8-binding site and one of the predicted helix or coiled-coil segments were made. IC(1-143) shows no increase in helical structure upon binding, while IC(114-260) shows an increase in helical structure similar to what is observed with IC(1-289). Binding of IC(114-260) to LC8 was monitored by fluorescence and native gel electrophoresis and shows saturation of binding, a stoichiometry of 1:1, and moderate binding affinity. The induced folding of IC(1-289) upon LC8 binding suggests that LC8 could act through the intermediate chain to facilitate dynein assembly or regulate cargo-binding interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.